Solar activity is usually caused by the evolution of solar magnetic fields. Magnetic field parameters derived from photospheric vector magnetograms of solar active regions have been used to analyze and forecast eruptive events such as solar flares and coronal mass ejections. Unfortunately, the most recent solar cycle 24 was relatively weak with few large flares, though it is the only solar cycle in which consistent time-sequence vector magnetograms have been available through the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) since its launch in 2010. In this paper, we look into another major instrument, namely the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) from 1996 to 2010. The data archive of SOHO/MDI covers more active solar cycle 23 with many large flares. However, SOHO/MDI data only has line-of-sight (LOS) magnetograms. We propose a new deep learning method, named MagNet, to learn from combined LOS magnetograms, Bx and By taken by SDO/HMI along with H-alpha observations collected by the Big Bear Solar Observatory (BBSO), and to generate vector components Bx' and By', which would form vector magnetograms with observed LOS data. In this way, we can expand the availability of vector magnetograms to the period from 1996 to present. Experimental results demonstrate the good performance of the proposed method. To our knowledge, this is the first time that deep learning has been used to generate photospheric vector magnetograms of solar active regions for SOHO/MDI using SDO/HMI and H-alpha data.
translated by 谷歌翻译
RNA结构的确定和预测可以促进靶向RNA的药物开发和可用的共性元素设计。但是,由于RNA的固有结构灵活性,所有三种主流结构测定方法(X射线晶体学,NMR和Cryo-EM)在解决RNA结构时会遇到挑战,这导致已解决的RNA结构的稀缺性。计算预测方法作为实验技术的补充。但是,\ textit {de从头}的方法都不基于深度学习,因为可用的结构太少。取而代之的是,他们中的大多数采用了耗时的采样策略,而且它们的性能似乎达到了高原。在这项工作中,我们开发了第一种端到端的深度学习方法E2FOLD-3D,以准确执行\ textit {de de novo} RNA结构预测。提出了几个新的组件来克服数据稀缺性,例如完全不同的端到端管道,二级结构辅助自我鉴定和参数有效的骨干配方。此类设计在独立的,非重叠的RNA拼图测试数据集上进行了验证,并达到平均sub-4 \ aa {}根平方偏差,与最先进的方法相比,它表现出了优越的性能。有趣的是,它在预测RNA复杂结构时也可以取得令人鼓舞的结果,这是先前系统无法完成的壮举。当E2FOLD-3D与实验技术耦合时,RNA结构预测场可以大大提高。
translated by 谷歌翻译
Muilti-Delicality数据在生物学中普遍存在,特别是我们进入了多OMICS时代,当我们可以测量来自不同方面(OMIC)的相同生物对象(单元)来提供更全面的洞察蜂窝系统。在处理此类多个OMICS数据时,第一步是确定不同模式之间的对应关系。换句话说,我们应该与与相同对象相对应的不同空格匹配数据。这个问题在单细胞多OMICS场景中特别具有挑战性,因为这种数据具有极高的尺寸。其次,匹配的单细胞多OMICS数据是罕见的且难以收集的。此外,由于实验环境的局限性,数据通常非常嘈杂。为了促进单细胞多OMICS研究,我们克服了上述挑战,提出了一种新颖的框架来对齐和集成单细胞RNA-SEQ数据和单细胞ATAC-SEQ数据。我们的方法可以通过在统一空间中有效地将上述数据与来自不同空间的高稀疏性和噪声从不同空间的噪声映射到低维歧管,使下游对准和直接集成。与其他最先进的方法相比,我们的方法在模拟和实际单细胞数据中执行更好。所提出的方法有助于单细胞多OMICS研究。对模拟数据集成的改进是显着的。
translated by 谷歌翻译
CutMix is a vital augmentation strategy that determines the performance and generalization ability of vision transformers (ViTs). However, the inconsistency between the mixed images and the corresponding labels harms its efficacy. Existing CutMix variants tackle this problem by generating more consistent mixed images or more precise mixed labels, but inevitably introduce heavy training overhead or require extra information, undermining ease of use. To this end, we propose an efficient and effective Self-Motivated image Mixing method (SMMix), which motivates both image and label enhancement by the model under training itself. Specifically, we propose a max-min attention region mixing approach that enriches the attention-focused objects in the mixed images. Then, we introduce a fine-grained label assignment technique that co-trains the output tokens of mixed images with fine-grained supervision. Moreover, we devise a novel feature consistency constraint to align features from mixed and unmixed images. Due to the subtle designs of the self-motivated paradigm, our SMMix is significant in its smaller training overhead and better performance than other CutMix variants. In particular, SMMix improves the accuracy of DeiT-T/S, CaiT-XXS-24/36, and PVT-T/S/M/L by more than +1% on ImageNet-1k. The generalization capability of our method is also demonstrated on downstream tasks and out-of-distribution datasets. Code of this project is available at https://github.com/ChenMnZ/SMMix.
translated by 谷歌翻译
As a neural network compression technique, post-training quantization (PTQ) transforms a pre-trained model into a quantized model using a lower-precision data type. However, the prediction accuracy will decrease because of the quantization noise, especially in extremely low-bit settings. How to determine the appropriate quantization parameters (e.g., scaling factors and rounding of weights) is the main problem facing now. Many existing methods determine the quantization parameters by minimizing the distance between features before and after quantization. Using this distance as the metric to optimize the quantization parameters only considers local information. We analyze the problem of minimizing local metrics and indicate that it would not result in optimal quantization parameters. Furthermore, the quantized model suffers from overfitting due to the small number of calibration samples in PTQ. In this paper, we propose PD-Quant to solve the problems. PD-Quant uses the information of differences between network prediction before and after quantization to determine the quantization parameters. To mitigate the overfitting problem, PD-Quant adjusts the distribution of activations in PTQ. Experiments show that PD-Quant leads to better quantization parameters and improves the prediction accuracy of quantized models, especially in low-bit settings. For example, PD-Quant pushes the accuracy of ResNet-18 up to 53.08% and RegNetX-600MF up to 40.92% in weight 2-bit activation 2-bit. The code will be released at https://github.com/hustvl/PD-Quant.
translated by 谷歌翻译
Denoising diffusion (score-based) generative models have recently achieved significant accomplishments in generating realistic and diverse data. These approaches define a forward diffusion process for transforming data into noise and a backward denoising process for sampling data from noise. Unfortunately, the generation process of current denoising diffusion models is notoriously slow due to the lengthy iterative noise estimations, which rely on cumbersome neural networks. It prevents the diffusion models from being widely deployed, especially on edge devices. Previous works accelerate the generation process of diffusion model (DM) via finding shorter yet effective sampling trajectories. However, they overlook the cost of noise estimation with a heavy network in every iteration. In this work, we accelerate generation from the perspective of compressing the noise estimation network. Due to the difficulty of retraining DMs, we exclude mainstream training-aware compression paradigms and introduce post-training quantization (PTQ) into DM acceleration. However, the output distributions of noise estimation networks change with time-step, making previous PTQ methods fail in DMs since they are designed for single-time step scenarios. To devise a DM-specific PTQ method, we explore PTQ on DM in three aspects: quantized operations, calibration dataset, and calibration metric. We summarize and use several observations derived from all-inclusive investigations to formulate our method, which especially targets the unique multi-time-step structure of DMs. Experimentally, our method can directly quantize full-precision DMs into 8-bit models while maintaining or even improving their performance in a training-free manner. Importantly, our method can serve as a plug-and-play module on other fast-sampling methods, e.g., DDIM.
translated by 谷歌翻译
本文旨在探讨如何合成对其进行训练的现有视频脱毛模型的近距离模糊,可以很好地推广到现实世界中的模糊视频。近年来,基于深度学习的方法已在视频Deblurring任务上取得了希望的成功。但是,对现有合成数据集培训的模型仍然遭受了与现实世界中的模糊场景的概括问题。造成故障的因素仍然未知。因此,我们重新审视经典的模糊综合管道,并找出可能的原因,包括拍摄参数,模糊形成空间和图像信号处理器〜(ISP)。为了分析这些潜在因素的效果,我们首先收集一个超高帧速率(940 fps)原始视频数据集作为数据基础,以综合各种模糊。然后,我们提出了一种新颖的现实模糊合成管道,该管道通过利用模糊形成线索称为原始爆炸。通过大量实验,我们证明了在原始空间中的合成模糊并采用与现实世界测试数据相同的ISP可以有效消除合成数据的负面影响。此外,合成的模糊视频的拍摄参数,例如,曝光时间和框架速率在改善脱毛模型的性能中起着重要作用。令人印象深刻的是,与在现有合成模糊数据集中训练的训练的模型合成的模糊数据训练的模型可以获得超过5DB PSNR的增益。我们认为,新颖的现实合成管道和相应的原始视频数据集可以帮助社区轻松构建自定义的Blur数据集,以改善现实世界的视频DeBlurring性能,而不是费力地收集真实的数据对。
translated by 谷歌翻译
由于空间和时间变化的模糊,视频脱毛是一个高度不足的问题。视频脱毛的直观方法包括两个步骤:a)检测当前框架中的模糊区域; b)利用来自相邻帧中清晰区域的信息,以使当前框架脱毛。为了实现这一过程,我们的想法是检测每个帧的像素模糊级别,并将其与视频Deblurring结合使用。为此,我们提出了一个新颖的框架,该框架利用了先验运动级(MMP)作为有效的深视频脱张的指南。具体而言,由于在曝光时间内沿其轨迹的像素运动与运动模糊水平呈正相关,因此我们首先使用高频尖锐框架的光流量的平均幅度来生成合成模糊框架及其相应的像素 - 像素 - 明智的运动幅度地图。然后,我们构建一个数据集,包括模糊框架和MMP对。然后,由紧凑的CNN通过回归来学习MMP。 MMP包括空间和时间模糊级别的信息,可以将其进一步集成到视频脱毛的有效复发性神经网络(RNN)中。我们进行密集的实验,以验证公共数据集中提出的方法的有效性。
translated by 谷歌翻译
我们研究了从单个运动毛发图像中恢复详细运动的挑战性问题。该问题的现有解决方案估算一个单个图像序列,而无需考虑每个区域的运动歧义。因此,结果倾向于收敛到多模式可能性的平均值。在本文中,我们明确说明了这种运动歧义,使我们能够详细地生成多个合理的解决方案。关键思想是引入运动引导表示,这是对仅有四个离散运动方向的2D光流的紧凑量量化。在运动引导的条件下,模糊分解通过使用新型的两阶段分解网络导致了特定的,明确的解决方案。我们提出了一个模糊分解的统一框架,该框架支持各种界面来生成我们的运动指导,包括人类输入,来自相邻视频帧的运动信息以及从视频数据集中学习。关于合成数据集和现实世界数据的广泛实验表明,所提出的框架在定性和定量上优于以前的方法,并且还具有生产物理上合理和多样的解决方案的优点。代码可从https://github.com/zzh-tech/animation-from-blur获得。
translated by 谷歌翻译
在本文中,我们为开关系统提供了一种基于神经网络的自适应学习(DNN-AL)方法。当前,基于神经网络的深度方法是为了学习未知动态系统中的方程式而积极开发的,但是它们的效率可能会因离散时间时存在结构变化而对开关系统退化。在这种新的DNN-AL策略中,观察到的数据集被自适应分解为子集,因此每个子集中没有结构性变化。在自适应过程中,DNN是层次结构的,并逐渐识别出未知的切换时间。尤其是,重复使用先前迭代步骤的网络参数以初始化后期迭代步骤的网络,从而为DNN提供有效的培训程序。对于通过我们的DNN-AL获得的DNN,建立了预测误差的界限。进行了数值研究以证明DNN-AL的效率。
translated by 谷歌翻译